Homotopy method for the eigenvalues of symmetric tridiagonal matrices
نویسندگان
چکیده
منابع مشابه
Eigenvalues of symmetric tridiagonal interval matrices revisited
In this short note, we present a novel method for computing exact lower and upper bounds of a symmetric tridiagonal interval matrix. Compared to the known methods, our approach is fast, simple to present and to implement, and avoids any assumptions Our construction explicitly yields those matrices for which particular lower and upper bounds are attained.
متن کاملBounds for the extremal eigenvalues of a class of symmetric tridiagonal matrices with applications
We consider a class of symmetric tridiagonal matrices which may be viewed as perturbations of Toeplitz matrices. The Toeplitz structure is destroyed since two elements on each off-diagonal are perturbed. Based on a careful analysis of the corresponding characteristic polynomial, we derive sharp bounds for the extremal eigenvalues of this class of matrices in terms of the original data of the gi...
متن کاملUsing GPUs to Accelerate the Bisection Algorithm for Finding Eigenvalues of Symmetric Tridiagonal Matrices
Graphical Processing Units (GPUs) potentially promise widespread and inexpensive high performance computation. However, architectural limitations (only some operations and memory access patterns can be performed quickly, partial support for IEEE floating point arithmetic) make it necessary to change existing algorithms to attain high performance and correctness. Here we show how to make the bis...
متن کاملEigenvalues and eigenvectors of tridiagonal matrices
This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...
متن کاملEla Eigenvalues and Eigenvectors of Tridiagonal Matrices
This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2013
ISSN: 0377-0427
DOI: 10.1016/j.cam.2012.08.010